Specification for a single omics modality including data, preprocessing, and learner.
Encapsulates everything needed to train/predict on one data type.
Public fields
id
Unique identifier for this modality (e.g., "mRNA", "miRNA")
x
Data matrix (samples x features)
learner
mlr3 Learner object
preproc
Optional mlr3pipelines Graph or PipeOp for preprocessing
Methods
Method new()
Create a new modality specification
Arguments
id
Character, unique modality identifier
x
Matrix or data.frame with samples in rows, features in columns.
Rownames should be sample IDs.
learner
mlr3 Learner or character shortcut (e.g., "classif.ranger")
preproc
Optional preprocessing pipeline (Graph or PipeOp)
Returns
An OmicModalitySpec object
Method get_sample_ids()
Get sample IDs for this modality
Usage
OmicModalitySpec$get_sample_ids()
Returns
Character vector of sample IDs
Method n_features()
Get number of features
Usage
OmicModalitySpec$n_features()
Method make_graph_learner()
Create a GraphLearner combining preprocessing and learner
Usage
OmicModalitySpec$make_graph_learner()
Returns
GraphLearner or Learner
Method as_task()
Create an mlr3 Task from this modality's data
Usage
OmicModalitySpec$as_task(
y,
target_name = "target",
task_type = c("classif", "regr"),
sample_ids = NULL
)
Arguments
y
Target vector (must align with rownames of x)
target_name
Name for target column
task_type
"classif" or "regr"
sample_ids
Optional subset of sample IDs to use
Returns
TaskClassif or TaskRegr
Method clone()
The objects of this class are cloneable with this method.
Usage
OmicModalitySpec$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.