Convenience function to run Bayesian-optimized learners in nested CV and compare performance.
Usage
run_bayesian_benchmark(
task,
learners = c("xgboost", "ranger", "glmnet"),
outer_folds = 5,
inner_folds = 3,
n_evals = NULL,
measure = "classif.auc",
seed = NULL
)Arguments
- task
An mlr3 Task
- learners
Character vector of learner names: "xgboost", "lightgbm", "ranger", "glmnet"
- outer_folds
Number of outer CV folds (default: 5)
- inner_folds
Number of inner CV folds (default: 3)
- n_evals
Number of MBO iterations per learner (default: auto)
- measure
Performance measure (default: classif.auc)
- seed
Random seed
Examples
if (FALSE) { # \dontrun{
result <- run_bayesian_benchmark(
task,
learners = c("xgboost", "ranger", "glmnet"),
outer_folds = 5,
n_evals = 30
)
result$aggregate(msr("classif.auc"))
} # }