Creates a Multi-Layer Perceptron with regularization optimized for high-dimensional omics data.
Usage
make_mlp_learner(
n_hidden = 128L,
n_layers = 2L,
dropout = 0.5,
batch_size = 32L,
epochs = 100L,
learning_rate = 0.001,
weight_decay = 0.01,
early_stopping_patience = 10L
)Arguments
Number of hidden units per layer (default: 128)
- n_layers
Number of hidden layers (default: 2)
- dropout
Dropout rate (default: 0.5)
- batch_size
Training batch size (default: 32)
- epochs
Number of training epochs (default: 100)
- learning_rate
Learning rate (default: 0.001)
- weight_decay
L2 regularization (default: 0.01)
- early_stopping_patience
Patience for early stopping (default: 10)