Skip to contents

Fits isotonic (monotonic) regression for probability calibration. Non-parametric method that produces a monotonically increasing calibration mapping.

Usage

fit_isotonic_calibration(probs, labels)

Arguments

probs

Calibration set predicted probabilities

labels

Calibration set labels

Value

A function that recalibrates probabilities

Details

Isotonic regression finds the best monotonically increasing function that maps scores to calibrated probabilities. It's more flexible than Platt scaling but requires more calibration data.

IMPORTANT: Must be fit on a held-out calibration set, not training data, to avoid leakage.

Examples

if (FALSE) { # \dontrun{
# Fit on calibration set
calibrator <- fit_isotonic_calibration(cal_probs, cal_labels)

# Apply to new predictions
calibrated <- calibrator(new_probs)
} # }